A Distributed Intelligent Lighting Solution and the Design and Implementation of a Sensor Middleware System

dc.contributor.authorFischer, Michael
dc.contributor.supervisorWu, Kui
dc.contributor.supervisorAgathoklis, Panajotis
dc.date.accessioned2015-04-30T20:43:01Z
dc.date.available2015-04-30T20:43:01Z
dc.date.copyright2015en_US
dc.date.issued2015-04-30
dc.degree.departmentDepartment of Computer Scienceen_US
dc.degree.levelMaster of Science M.Sc.en_US
dc.description.abstractThis thesis addresses a multi-phase research and development project that spanned nearly four years, targeted at providing an ultra high-efficiency, user-friendly, and economic intelligent lighting solution for commercial facility applications, initially targeting underground parking specifically. The system would leverage the strengths of four key technologies: high brightness white Light Emitting Diodes (LEDs), wireless sensor and actuator networks, single board computers, and cloud computing. An introduction to these technologies and an overview of how they were combined to build an intelligent lighting solution is given, followed by an in-depth description of the design and implementation of one of the main subsystems – the Sensor Middleware System – residing on a single board computer. Newly-available LED luminaires (a.k.a. light fixtures) bring the combination of high efficiency, reliability, illumination quality, and long-lifetime to the lighting market. Emerging low-power – and recently low-cost – 802.15.4 wireless networks offer high controllability and responsiveness to deployed luminaires and sensors. The cost- associativity, low maintenance, and easy build-up of Internet Data Center “cloud” computing resources make data collection and remote management infrastructure for Building Automation Systems accessible to even small companies. Additionally, these resources can be much more appropriately sized and allocated, which reduces energy use. These technologies are combined to form an Intelligent Lighting System (ILS). Fitting well within the Internet of Things paradigm, this highly distributed messaging-based “system of systems” was designed to be reliable through loose coupling – spanning multiple network layers and messaging protocols. Its goal was to deliver significant energy savings over incumbent technologies, configurable and responsive lighting service behaviour, and improved experience for users within the facility (pedestrians and drivers) and those interacting with its web-based tools (building managers and ILS administrators). The ILS was partitioned into three main subsystems as follows. The installed Wireless Field Network (WFN) of luminaires and sensors provided coordinated scheduled and real-time output level adjustment (i.e. dimming), with the help of motion sensor triggers. The Monitoring and Configuration System (MCS) in the cloud provided remote data collection and a web-based monitoring and configuration Graphical User Interface application. Network hardware and Message-Oriented Middleware (MOM) were responsible for tying these subsystems together. The MOM layer that provided the message brokering, translating, envelope wrapping, and guaranteed delivery services between the WFN and MCS, as well as field supervisory and quality-of-service functions for the WFN, was called the Sensor Middleware System (SMS). It was hosted on a single board computer located at the facility.en_US
dc.description.scholarlevelGraduateen_US
dc.identifier.urihttp://hdl.handle.net/1828/6094
dc.languageEnglisheng
dc.language.isoenen_US
dc.rightsAvailable to the World Wide Weben_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/ca/*
dc.subjectInternet of Thingsen_US
dc.subjectdistributed systemsen_US
dc.subjectintelligent lightingen_US
dc.subjectenergy efficiencyen_US
dc.subjectLight Emitting Diode (LED)en_US
dc.subjectcommercial build energy efficiencyen_US
dc.subjectbuilding automationen_US
dc.subjectsensor middlewareen_US
dc.subjectcloud computingen_US
dc.subjectmessage-oriented middlewareen_US
dc.subjectsingle board computeren_US
dc.subjectwireless sensor network (WSN)en_US
dc.titleA Distributed Intelligent Lighting Solution and the Design and Implementation of a Sensor Middleware Systemen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fischer_Michael_MSc_2015.pdf
Size:
16.35 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Item-specific license agreed upon to submission
Description: