Asymptotic existence results on specific graph decompositions

dc.contributor.authorChan, Justin
dc.contributor.supervisorDukes, Peter
dc.date.accessioned2010-07-23T19:45:11Z
dc.date.available2010-07-23T19:45:11Z
dc.date.copyright2010en
dc.date.issued2010-07-23T19:45:11Z
dc.degree.departmentDepartment of Mathematics and Statistics
dc.degree.levelMaster of Science M.Sc.en
dc.description.abstractThis work examines various asymptotic edge-decomposition problems on graphs. A G-group divisible design (G-GDD) of type [g_1, ..., g_u] and index lambda is a decomposition of the edges of the complete lambda-fold multipartite graph H, with groups (maximal independent sets) G_1, ..., G_n, |G_i| = g_i, into graphs (blocks) isomorphic to G. We shall also examine special types of G-GDDs (such as G-frames) and prove that, given all parameters except u, these structures exist for all asymptotically large u satisfying the necessary conditions. Our primary technique is to invoke a useful theorem of Lamken and Wilson on edge-colored graph decompositions. The basic construction for k-RGDDs shall be outlined at the end of the thesis.en
dc.identifier.urihttp://hdl.handle.net/1828/2909
dc.languageEnglisheng
dc.language.isoenen
dc.rightsAvailable to the World Wide Weben
dc.subjectcombinatoricsen
dc.subjectcombinatorialen
dc.subjectdesignen
dc.subjectgraphen
dc.subjectframeen
dc.subjectframesen
dc.subjectdesignsen
dc.subjectresolvableen
dc.subjectgroupen
dc.subjectdivisibleen
dc.subject.lcshUVic Subject Index::Sciences and Engineering::Mathematics::Pure mathematicsen
dc.titleAsymptotic existence results on specific graph decompositionsen
dc.typeThesisen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LaTeX1.pdf
Size:
342.88 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Item-specific license agreed upon to submission
Description: