A Uniqueness Theorem for C*-algebras of Hausdorff Étale Groupoids

dc.contributor.authorGoerke, Gavin
dc.contributor.supervisorLaca, Marcelo
dc.contributor.supervisorEagle, Christopher
dc.date.accessioned2023-04-27T20:58:52Z
dc.date.available2023-04-27T20:58:52Z
dc.date.copyright2023en_US
dc.date.issued2023-04-27
dc.degree.departmentDepartment of Mathematics and Statistics
dc.degree.levelMaster of Science M.Sc.en_US
dc.description.abstractIn this thesis we study the ideal intersection property for inclusions of C*-algebras C*(H)↪C*(G) induced from a family of open subgroupoids {H} of a locally compact Hausdorff étale groupoid G. For such a family of open subgroupoids we define the notion of relative topological principality and we show that if G is relatively topologically principal to {H} then a representation of C*(G) is faithful if and only if the restriction of the representation to each of the subalgebras C*(H) is faithful. This gives a new method of verifying injectivity of representations of reduced groupoid C*-algebras. As an application of our result we prove a uniqueness theorem for C*-algebras of left cancellative small categories which generalizes a theorem of Marcelo Laca and Camila Sehnem for Toeplitz algebras of group embeddable monoids.en_US
dc.description.scholarlevelGraduateen_US
dc.identifier.urihttp://hdl.handle.net/1828/15010
dc.languageEnglisheng
dc.language.isoenen_US
dc.rightsAvailable to the World Wide Weben_US
dc.subjectC*-algebrasen_US
dc.subjectgroupoiden_US
dc.subjecttopologically freeen_US
dc.titleA Uniqueness Theorem for C*-algebras of Hausdorff Étale Groupoidsen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Goerke_Gavin_MSc_2023.pdf
Size:
330.61 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2 KB
Format:
Item-specific license agreed upon to submission
Description: