New possibilities for metallic nanoshells: broadening applications with narrow extinction bands

Date

2018-05-31

Authors

Gomes Sobral Filho, Regivaldo

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This dissertation comprises experimental studies on the synthesis and applications of metallic nanoshells. These are a class of nanoparticles composed of a dielectric core and a thin metallic shell. Metallic nanoshells play an important role in nanotechnology, particularly in nanomedicine, due to their peculiar optical properties. The overall objectives of the dissertation were to improve the fabrication of these nanoparticles, and to demonstrate new applications of these materials in cancer research and spectroscopy. The fabrication of nanoshells is a multi-step process. Previously to our work, the procedures for the synthesis of nanoshells reported in the literature lacked systematic characterization of the various steps. The procedure was extremely time-consuming and the results demonstrated a high degree of size variation. In Chapter 3, we have developed characterization tools that provide checkpoints for each step of the synthesis. We demonstrated that it is possible to control the degree of coverage on the shell for a fixed amount of reagents, and also showed important differences on the shell growth phase for gold and silver. The synthetic optimization presented in Chapter 3 led to an overall faster protocol than those previously reported. Although the improvements presented in Chapter 3 led to a higher degree of control on the synthesis of nanoshells, the variations in the resulting particle population were still too large for applications in single particle spectroscopy and imaging. In Chapter 4, the synthesis was completely reformulated, aiming to narrow the size distribution of the nanoshell colloids. Through the use of a reverse microemulsion, we were able to fabricate ultramonodisperse silica (SiO2) cores, which translate into nanoshell colloids with narrow extinction bands that are comparable to those of a single nanoshell. We then fabricate a library of colloids with different core sizes, shell thicknesses and composition (gold or silver). The localized surface plasmon resonance (LSPR) of these colloids span across the visible range. From this library, two nanoshells (18nm silver on a 50nm SiO2 core, and 18nm gold on a 72nm SiO2 core) were selected for a proof of principle cell imaging experiment. The silver nanoshells were coated with a nuclear localization signal, allowing it to target the nuclear membrane. The gold nanoshells were coated with an antibody that binds to a receptor on the plasma membrane of MCF-7 human breast cancer cells. The nanoshells were easily distinguishable by eye in a dark field microscope and successful targeting was demonstrated by hyperspectral dark field microscopy. A comparison was made between fluorescent phalloidin and nanoshells, showing the superior photostability of the nanoparticles for long-term cell imaging. The results from Chapter 4 suggest that the nanoshells obtained by our new synthetic route present acceptable particle-to-particle variations in their optical properties that enables single particle extinction spectroscopy for cell imaging. In Chapter 5 we explored the use of these nanoshells for single-particle Surface-enhanced Raman spectroscopy (SERS). Notice that particle-to-particle variations in SERS are expected to be more significant than in extinction spectroscopy. This is because particle-to-particle SERS variabilities are driven by subtle changes in geometric parameters (particle size, shape, roughness). Two types of gold nanoshells were prepared and different excitation wavelengths (λex) were evaluated, respective to the LSPR of the nanoshells. Individual scattering spectra were acquired for each particle, for a total of 163 nanoshells, at two laser excitation wavelengths (632.8 nm and 785 nm). The particle-to-particle variations in SERS intensity were evaluated and correlated to the efficiency of the scattering at the LSPR peak. Chapter 6 finally shows the application of gold nanoshells as a platform for the direct visualization of circulating tumor cells (CTCs). 4T1 breast cancer cells were transduced with a non-native target protein (Thy1.1) and an anti-Thy1.1 antibody was conjugated to gold nanoshells. The use of a transduced target creates the ideal scenario for the assessment of nonspecific binding. On the in vitro phase of the study, non-transduced cells were used as a negative control. In this phase, parameters such as incubation times and nanoshell concentration were established. A murine model was then developed with the transduced 4T1 cells for the ex vivo portion of the work. Non-transduced cells were implanted in a control group. Blood was drawn from mice in both groups over the course of 29 days. Antibody-conjugated nanoshells were incubated with the blood samples and detection of single CTCs was achieved in a dark field microscope. Low levels of nonspecific binding were observed in the control group for non-transduced cells and across different cell types normally found in peripheral blood (e.g. lymphocytes). All positive and negative subjects were successfully identified. Chapter 7 provides an outlook of the work presented here and elaborates on possible directions to further develop the use of nanoshells in bioapplications and spectroscopy.

Description

Keywords

SiO 2, localized surface plasmon resonance (LSPR), nanoshells, Surface - enhanced Raman spectroscopy (SERS)

Citation