Faber Polynomial Coefficient Estimates for Bi-Univalent Functions Defined by Using Differential Subordination and a Certain Fractional Derivative Operator

dc.contributor.authorSrivastava, H.M.
dc.contributor.authorMotamednezhad, Ahmad
dc.contributor.authorAdegani, Ebrahim Analouei
dc.date.accessioned2020-02-28T20:38:04Z
dc.date.available2020-02-28T20:38:04Z
dc.date.copyright2020en_US
dc.date.issued2020
dc.description.abstractIn this article, we introduce a general family of analytic and bi-univalent functions in the open unit disk, which is defined by applying the principle of differential subordination between analytic functions and the Tremblay fractional derivative operator. The upper bounds for the general coefficients |an| of functions in this subclass are found by using the Faber polynomial expansion. We have thereby generalized and improved some of the previously published results.en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.identifier.citationSrivastava, H.M., Motamednezhad, A. & Adegani, E.A. (2020). Faber Polynomial Coefficient Estimates for Bi-Univalent Functions Defined by Using Differential Subordination and a Certain Fractional Derivative Operator. Mathematics, 8(2), 172. https://doi.org/10.3390/math8020172en_US
dc.identifier.urihttp://dx.doi.org/10.3390/math8020172
dc.identifier.urihttp://hdl.handle.net/1828/11588
dc.language.isoenen_US
dc.publisherMathematicsen_US
dc.subjectanalytic functionsen_US
dc.subjectunivalent functionsen_US
dc.subjectbi-univalent functionsen_US
dc.subjectcoefficient estimatesen_US
dc.subjectTaylor-Maclaurin coefficientsen_US
dc.subjectFaber polynomial expansionen_US
dc.subjectdifferential subordinationen_US
dc.subjectTremblay fractional derivative operatoren_US
dc.titleFaber Polynomial Coefficient Estimates for Bi-Univalent Functions Defined by Using Differential Subordination and a Certain Fractional Derivative Operatoren_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Srivastava_H_Mathematics_2020.pdf
Size:
538.8 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: