New convolution theorem for the Stieltjes transform and its application to a class of singular integral equations
dc.contributor.author | Srivastava, H.M. | |
dc.contributor.author | Vu, Kim Tuan | |
dc.date.accessioned | 2010-04-20T20:53:29Z | |
dc.date.available | 2010-04-20T20:53:29Z | |
dc.date.copyright | 1991 | en |
dc.date.issued | 2010-04-20T20:53:29Z | |
dc.description.abstract | A new convolution theorem is proved for the Stieltjes transform and is then applied in solving a certain class of singular integral equations which are related rather closely to the Riemann-Hilbert boundary value problem. Some further extensions and consequences of the convolution theorem are also considered. | en |
dc.description.sponsorship | NSERC Grant OGP0007353 | en |
dc.identifier.uri | http://hdl.handle.net/1828/2623 | |
dc.language.iso | en | en |
dc.relation.ispartofseries | DMS-574-IR | en |
dc.subject | convolution theorem | en |
dc.subject | Stieltjes transform | en |
dc.subject | singular integral equations | en |
dc.subject | Riemann-Hilbert boundary value problem | en |
dc.subject | Fourier transform | en |
dc.subject | Laplace transform | en |
dc.subject | Mellin transform | en |
dc.subject | convolution integral equations | en |
dc.subject | convolution transforms | en |
dc.subject | Cauchy principal integrals | en |
dc.subject | Lipschitz condition | en |
dc.subject | transcendental equation | en |
dc.subject | classical inversion theorem | en |
dc.title | New convolution theorem for the Stieltjes transform and its application to a class of singular integral equations | en |
dc.type | Technical Report | en |