Unsupervised log message anomaly detection

dc.contributor.authorFarzad, Amir
dc.contributor.authorGulliver, Thomas Aaron
dc.date.accessioned2020-08-22T00:20:38Z
dc.date.available2020-08-22T00:20:38Z
dc.date.copyright2020en_US
dc.date.issued2020
dc.description.abstractLog messages are now broadly used in cloud and software systems. They are important for classification and anomaly detection as millions of logs are generated each day. In this paper, an unsupervised model for log message anomaly detection is proposed which employs Isolation Forest and two deep Autoencoder networks. The Autoencoder networks are used for training and feature extraction, and then for anomaly detection, while Isolation Forest is used for positive sample prediction. The proposed model is evaluated using the BGL, Openstack and Thunderbird log message data sets. The results obtained show that the number of negative samples predicted to be positive is low, especially with Isolation Forest and one Autoencoder. Further, the results are better than with other well-known models.en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.identifier.citationFarzad, A., & Gulliver, T. A. (2020). Unsupervised log message anomaly detection. ICT Express, 6(3), 229-237. https://doi.org/10.1016/j.icte.2020.06.003.en_US
dc.identifier.urihttps://doi.org/10.1016/j.icte.2020.06.003
dc.identifier.urihttp://hdl.handle.net/1828/12020
dc.language.isoenen_US
dc.publisherICT Expressen_US
dc.subjectAnomaly detectionen_US
dc.subjectClassificationen_US
dc.subjectDeep learningen_US
dc.subjectLog messagesen_US
dc.subjectUnsupervised learningen_US
dc.titleUnsupervised log message anomaly detectionen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Farzad_Amir_ICTExpress_2020.pdf
Size:
721.86 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: