Generating functions for a class of q-polynomials

dc.contributor.authorSrivastava, H.M.
dc.contributor.authorAgarwal, A. K.
dc.date.accessioned2009-09-04T18:33:38Z
dc.date.available2009-09-04T18:33:38Z
dc.date.copyright1986en
dc.date.issued2009-09-04T18:33:38Z
dc.description.abstractSome simple ideas are used here to prove a theorem on generating functions for a certain class of q-polynomials. This general theorem is then applied to derive a fairly large number of known as well as new generating functions for the familiar q-analogues of various polynomial systems including, for example, the classical orthogonal polynomials of Hermite, Jacobi, and Laguerre. A number of other interesting consequences of the theorem are also discussed.en
dc.description.sponsorshipGovernment of India, Ministry of Education & Culture National Scholarship for Higher Study Abroad and NSERC Grant A7353en
dc.identifier.urihttp://hdl.handle.net/1828/1738
dc.language.isoenen
dc.relation.ispartofseriesDM-426-IRen
dc.subjectgenerating functionsen
dc.subjectq-polynomialsen
dc.subjectclassical orthogonal polynomialsen
dc.subjectq-seriesen
dc.subjecthypergeometric identitiesen
dc.subjectquadratic transformationsen
dc.subjectspecial functionsen
dc.subjectq-Pfaff transformationen
dc.subjectKummer's summation theoremen
dc.subjectGauss's second theoremen
dc.subjectPfaff-Saalschutz theoremen
dc.subjectbasic (or q-) hypergeometric functionen
dc.subjectGaussian polynomial (or q-binomial coefficient)en
dc.subjectq-binomial theoremen
dc.subjectq-Laguerre polynomialsen
dc.subjectlittle q-Jacobi polynomialsen
dc.subjectq-Hahn polynomialsen
dc.subjectq-Meixner polynomialsen
dc.subjectq-Charlier polynomialsen
dc.subjectHeine's transformationen
dc.subjectconfluent hypergeometric functionen
dc.subjectq-Hermite polynomialsen
dc.subjectq-summation formulaen
dc.subjectq-hypergeometric polynomialsen
dc.titleGenerating functions for a class of q-polynomialsen
dc.typeTechnical Reporten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DM 426.pdf
Size:
354.19 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.84 KB
Format:
Item-specific license agreed upon to submission
Description: