Structure-dependency of the atomic-scale mechanisms of platinum electro-oxidation and dissolution

dc.contributor.authorFuchs, Timo
dc.contributor.authorDrnec, Jakub
dc.contributor.authorCalle-Vallejo, Federico
dc.contributor.authorStubb, Natalie
dc.contributor.authorSandbeck, Daniel J. S.
dc.contributor.authorRuge, Martin
dc.contributor.authorCherevko, Serhiy
dc.contributor.authorHarrington, David A.
dc.contributor.authorMagnussen, Olaf M.
dc.date.accessioned2021-03-24T23:47:39Z
dc.date.available2021-03-24T23:47:39Z
dc.date.copyright2020en_US
dc.date.issued2020
dc.description.abstractPlatinum dissolution and restructuring due to surface oxidation are primary degradation mechanisms that limit the lifetime of platinum-based electrocatalysts for electrochemical energy conversion. Here, we have studied well-defined Pt(100) and Pt(111) electrode surfaces by in situ high-energy surface X-ray diffraction, online inductively coupled plasma mass spectrometry and density functional theory calculations to elucidate the atomic-scale mechanisms of these processes. The locations of the extracted platinum atoms after Pt(100) oxidation reveal distinct differences from the Pt(111) case, which explains the different surface stability. The evolution of a specific oxide stripe structure on Pt(100) produces unstable surface atoms that are prone to dissolution and restructuring, leading to one order of magnitude higher dissolution rates.en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.description.sponsorshipWe acknowledge the European Synchrotron Radiation Facility for provision of SXRD facilities, and H. Isern and T. Dufrane for their help with the SXRD experiments. Funding is acknowledged from the NSERC (grant no. RGPIN-2017-04045) and Deutsche Forschungsgemeinschaft (grant nos. MA 1618/23 and CH 1763/5-1). F.C.-V acknowledges funding from Spanish MICIUN RTI2018-095460-B-I00 and María de Maeztu MDM-2017-0767 grants, and thanks RES for supercomputing time at SCAYLE (projects QS-2019-3-0018, QS-2019-2-0023, and QCM-2019-1-0034) and MareNostrum (project QS-2020-1-0012). The use of supercomputing facilities at SURFsara was sponsored by NWO Physical Sciences, with financial support by NWO.en_US
dc.identifier.citationFuchs, T., Drnec, J., Calle-Vallejo, F., Stubb, N., Sandbeck, D. J. S., Harrington, D. A., … Magnussen, O. M. (2020). Structure dependency of the atomic-scale mechanisms of platinum electro-oxidation and dissolution. Nature Catalysis, 3, 754- 761. https://doi.org/10.1038/s41929-020-0497-y.en_US
dc.identifier.urihttps://doi.org/10.1038/s41929-020-0497-y
dc.identifier.urihttp://hdl.handle.net/1828/12796
dc.language.isoenen_US
dc.publisherNature Catalysisen_US
dc.subject.departmentDepartment of Chemistry
dc.titleStructure-dependency of the atomic-scale mechanisms of platinum electro-oxidation and dissolutionen_US
dc.typePostprinten_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fuchs_Timo_NatCatal_2020.pdf
Size:
2.46 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2 KB
Format:
Item-specific license agreed upon to submission
Description: