Broadcasts in Graphs: Diametrical Trees

dc.contributor.authorGemmrich, L.
dc.contributor.authorMynhardt, C.M.
dc.date.accessioned2017-08-21T19:32:35Z
dc.date.available2017-08-21T19:32:35Z
dc.date.copyright2017en_US
dc.date.issued2017-08-21
dc.descriptionAccepted for publication in the Australasian Journal of Combinatoricsen_US
dc.description.abstractA dominating broadcast on a graph G=(V,E) is a function f:V→{0,1,…,diam(G)} such that f(v)≤e(v) (the eccentricity of v) for all v∈V, and each u∈V is at distance at most f(v) from a vertex v with f(v)≥1. The upper broadcast domination number of G is Γ_{b}(G)=max{∑_{v∈V}f(v):f is a minimal dominating broadcast on G}. As shown by Erwin in [D. Erwin, Cost domination in graphs, Doctoral dissertation, Western Michigan University, 2001], Γ_{b}(G)≥diam(G) for any graph G. We investigate trees whose upper broadcast domination number equal their diameter and, among more general results, characterise caterpillars with this property.en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canadaen_US
dc.identifier.urihttp://hdl.handle.net/1828/8436
dc.language.isoenen_US
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Canada*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/ca/*
dc.subjectbroadcast on a graphen_US
dc.subjectdominating broadcasten_US
dc.subjectminimal dominating broadcasten_US
dc.subjectupper broadcast domination numberen_US
dc.titleBroadcasts in Graphs: Diametrical Treesen_US
dc.typePostprinten_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gemmrich_AustralasJCombin_2017.pdf
Size:
226.53 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: