Certain subclasses of meromorphically univalent functions with positive or negative coefficients
dc.contributor.author | Chen, M-P. | |
dc.contributor.author | Irmak, H. | |
dc.contributor.author | Srivastava, H.M. | |
dc.contributor.author | Yu, C. | |
dc.date.accessioned | 2009-08-27T21:45:19Z | |
dc.date.available | 2009-08-27T21:45:19Z | |
dc.date.copyright | 1995 | en |
dc.date.issued | 2009-08-27T21:45:19Z | |
dc.description.sponsorship | National Science Council of the Republic of China Grant NSC-85-121-M-001-013, and in part by NSERC Grant OGP0007353. | en |
dc.identifier.uri | http://hdl.handle.net/1828/1661 | |
dc.language.iso | en | en |
dc.relation.ispartofseries | DM-713-IR | en |
dc.subject | meromorphic functions | en |
dc.subject | univalent functions | en |
dc.subject | analytic functions | en |
dc.subject | growth and distortion theorems | en |
dc.subject | starlike functions | en |
dc.subject | convex functions | en |
dc.subject | quasi-Hadamard product (or convolution) | en |
dc.subject | maximum modulus theorem | en |
dc.subject | Cauchy-Schwarz inequality | en |
dc.title | Certain subclasses of meromorphically univalent functions with positive or negative coefficients | en |
dc.type | Technical Report | en |