Ordered colourings of line graphs of trees

dc.contributor.authorMcCuaig, William
dc.date.accessioned2009-08-20T23:12:43Z
dc.date.available2009-08-20T23:12:43Z
dc.date.copyright1988en
dc.date.issued2009-08-20T23:12:43Z
dc.description.abstractAn ordered colouring of a graph G is a function c from V(G) into the positive integers such that for every pair of vertices u and v and for every (u,v)-path P, if c(u)=c(v) then there exists an internal vertex x of P with c(u)<c(x). An ordered colouring of G is minimal if the largest integer in the range is minimal. We give a polynomial algorithm for finding a minimal ordered colouring of a line graph of a tree. We then extend the algorithm to a larger class of graphs.en
dc.identifier.urihttp://hdl.handle.net/1828/1558
dc.language.isoenen
dc.relation.ispartofseriesDM-467-IRen
dc.titleOrdered colourings of line graphs of treesen
dc.typeTechnical Reporten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DM-467-IR.pdf
Size:
412.3 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.84 KB
Format:
Item-specific license agreed upon to submission
Description: