Non 3-choosable bipartite graphs and the Fano plane
| dc.contributor.author | Fitzpatrick, Shannon L. | |
| dc.contributor.author | MacGillivray, Gary | |
| dc.date.accessioned | 2010-05-11T20:15:38Z | |
| dc.date.available | 2010-05-11T20:15:38Z | |
| dc.date.copyright | 2003 | en |
| dc.date.issued | 2010-05-11T20:15:38Z | |
| dc.description.abstract | It is known that the smallest complete bipartite graph which is not 3-choosable has 14 vertices. We show that the extremal configuration is unique. | en |
| dc.identifier.uri | http://hdl.handle.net/1828/2746 | |
| dc.language.iso | en | en |
| dc.relation.ispartofseries | DMS-854-IR | en |
| dc.subject | technical reports (mathematics and statistics) | |
| dc.subject.department | Department of Mathematics and Statistics | |
| dc.title | Non 3-choosable bipartite graphs and the Fano plane | en |
| dc.type | Technical Report | en |