Non 3-choosable bipartite graphs and the Fano plane

dc.contributor.authorFitzpatrick, Shannon L.
dc.contributor.authorMacGillivray, Gary
dc.date.accessioned2010-05-11T20:15:38Z
dc.date.available2010-05-11T20:15:38Z
dc.date.copyright2003en
dc.date.issued2010-05-11T20:15:38Z
dc.description.abstractIt is known that the smallest complete bipartite graph which is not 3-choosable has 14 vertices. We show that the extremal configuration is unique.en
dc.identifier.urihttp://hdl.handle.net/1828/2746
dc.language.isoenen
dc.relation.ispartofseriesDMS-854-IRen
dc.subjecttechnical reports (mathematics and statistics)
dc.subject.departmentDepartment of Mathematics and Statistics
dc.titleNon 3-choosable bipartite graphs and the Fano planeen
dc.typeTechnical Reporten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DMS 854.pdf
Size:
907.23 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.84 KB
Format:
Item-specific license agreed upon to submission
Description: