Impact of tetrakis(dimethylamido)tin(IV) degradation on atomic layer deposition of tin oxide films and perovskite solar cells
Date
2024
Authors
Qiu, Shuang
Amaro, Augusto
Fabulyak, Diana
Appleby-Millette, Julien
Conover, Cassidy
Zhang, Dongyang
Yeddu, Vishal
Cheong, I Teng
Paci, Irina
Saidaminov, Makhsud I.
Journal Title
Journal ISSN
Volume Title
Publisher
Small
Abstract
Tin oxide (SnOx) films synthesized by atomic layer deposition (ALD) are widely explored in a range of optoelectronic devices including electrochemical sensors, transistors, and photovoltaics. However, the integrity of the key ALD-SnOx precursor, namely tetrakis(dimethylamido)tin (IV) (TDMASn), and its influence on the properties of ultimate films remain unexplored. Here a significant degradation of TDMASn into bis(dimethylamido)tin(II) via the Sn-imine complex is reported, and its impact on the corresponding films and devices is examined. It is found, surprisingly, that this degradation does not affect the growth kinetics and morphology of ALD-SnOx films. But it notably deteriorates their electronic properties, resulting in films with twice the electrical resistance due to different oxidation mechanisms of the degradation products. Perovskite solar cells employing such films exhibit a significant loss in power conversion efficiency, primarily due to charge transport and transfer losses. These findings urge strategies to stabilize TDMASn, a critical precursor for ALD-SnOx films, or to identify alternative materials to achieve efficient and reliable devices.
Description
Keywords
atomic layer deposition, electron transporter layer, perovskite solar cells, tin oxide
Citation
Qiu, S., Amaro, A., Fabulyak, D., Appleby-Millette, J., Conover, C., Zhang, D., Yeddu, V., Cheong, I. T., Paci, I., & Saidaminov, M. I. (2024). Impact of tetrakis(dimethylamido)tin(IV) degradation on atomic layer deposition of tin oxide films and perovskite solar cells. Small. https://doi.org/10.1002/smll.202404966