General Fractional-Order Anomalous Diffusion with Non-Singular Power-Law Kernel

dc.contributor.authorYang, Xiao-Jun
dc.contributor.authorSrivastava, H.M.
dc.contributor.authorTorres, Delfim F. M.
dc.contributor.authorDebbouche, Amar
dc.date.accessioned2018-07-19T14:35:40Z
dc.date.available2018-07-19T14:35:40Z
dc.date.copyright2017en_US
dc.date.issued2017
dc.description.abstractIn this paper, we investigate general fractional derivatives with a non-singular power-law kernel. The anomalous diffusion models with non-singular power-law kernel are discussed in detail. The results are efficient for modelling the anomalous behaviors within the frameworks of the Riemann-Lionville and Liouville-Caputo general fractional derivatives.en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.description.sponsorshipThis work is supported by the State Key Research Development Program of the People Republic of China (Grant No. 2016YFC0600705), the Natural Science Foundation of China (Grant No. 51323004), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD2014), and by FCT and CIDMA through project UID/MAT/04106/2013 (Torres and Debbouche).en_US
dc.identifier.citationYang, X.-J.; Srivastava, H. M.; Torres, D. F. M.; & Debbouche, A. (2017). General fractional-order anomalous diffusion with non-singular power-law kernel. Thermal Science, 21(Supplement 1), S1-S9. https://doi.org/10.2298/TSCI170610193Yen_US
dc.identifier.urihttps://doi.org/10.2298/TSCI170610193Y
dc.identifier.urihttp://hdl.handle.net/1828/9733
dc.language.isoenen_US
dc.publisherThermal Scienceen_US
dc.subjectgeneral fractional derivative with non-singular power-law kernelen_US
dc.subjectRiemann-Liouville general fractional derivativeen_US
dc.subjectanomalous diffusionen_US
dc.subjectLiouville-Caputo general fractional derivativeen_US
dc.titleGeneral Fractional-Order Anomalous Diffusion with Non-Singular Power-Law Kernelen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
yang_xiaojun_thermsci_2017.pdf
Size:
513.2 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: