Insight into Functional Boiti–Leon–Mana–Pempinelli Equation and Error Control: Approximate Similarity Solutions

dc.contributor.authorAlqhtani, Manal
dc.contributor.authorSrivastava, Rekha
dc.contributor.authorAbdel-Gawad, Hamdy I.
dc.contributor.authorMacías-Díaz, Jorge E.
dc.contributor.authorSaad, Khaled M.
dc.contributor.authorHamanah, Waleed M.
dc.date.accessioned2023-12-13T17:33:01Z
dc.date.available2023-12-13T17:33:01Z
dc.date.copyright2023en_US
dc.date.issued2023
dc.description.abstractThe Boiti–Leon–Mana–Pempinelli Equation (BLMPE) is an essential mathematical model describing wave propagation in incompressible fluid dynamics. In the present manuscript, a novel generalization of the BLMPE is introduced, called herein the functional BLMPE (F-BLMPE), which involves different functions, including exponential, logarithmic and monomaniacal functions. In these cases, the F-BLMPE reduces to an explicit form in the dependent variable. In addition to this, it is worth deriving approximate similarity solutions of the F-BLMPE with constant coefficients using the extended unified method (EUM). In this method, nonlinear partial differential equation (NLPDE) solutions are expressed in polynomial and rational forms through an auxiliary function (AF) with adequate auxiliary equations. Exact solutions are estimated using formal solutions substituted into the NLPDEs, and the coefficients of the AF of all powers are set equal to zero. This approach is valid when the NLPDE is integrable. However, this technique is not valid for non-integrable equations, and only approximate solutions can be found. The maximum error can be controlled by an adequate choice of the parameters in the residue terms (RTs). Multiple similarity solutions are derived, and the ME is depicted in various examples within this work. The results found here confirm that the EUM is an efficient method for solving NLPDEs of the F-BLMPE type.en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.description.sponsorshipThis research was funded by the Deanship of Scientific Research at Najran University under grant number (NU/RG/SERC/12/22). One of the authors (J.E.M.-D.) was funded by the National Council of Science and Technology of Mexico (CONACYT) through grant A1-S-45928.en_US
dc.identifier.citationAlqhtani, M., Srivastava, R., Abdel-Gawad, H. I., Macías-Díaz, J. E., Saad, K. M., & Hamanah, W. M. (2023). Insight into functional Boiti–Leon–Mana–Pempinelli equation and error control: Approximate similarity solutions. Mathematics, 11(22), 4569. https://doi.org/10.3390/math11224569en_US
dc.identifier.urihttps://doi.org/10.3390/math11224569
dc.identifier.urihttp://hdl.handle.net/1828/15700
dc.language.isoenen_US
dc.publisherMathematicsen_US
dc.rightsAttribution 2.5 Canada*
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/ca/*
dc.subjectfunctional equation
dc.subjectBoiti–Leon–Mana–Pempinelli equation
dc.subjectsimilarity solutions
dc.subjecterror control
dc.subjectunified method
dc.subject.departmentDepartment of Mathematics and Statistics
dc.titleInsight into Functional Boiti–Leon–Mana–Pempinelli Equation and Error Control: Approximate Similarity Solutionsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Alqhtani_Manal_Mathematics_2023.pdf
Size:
2.58 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2 KB
Format:
Item-specific license agreed upon to submission
Description: