A study on the surrogate-based optimization of flexible wings considering a flutter constraint
Date
2024
Authors
Lunghitano, Alessandra
Afonso, Frederico
Suleman, Afzal
Journal Title
Journal ISSN
Volume Title
Publisher
Applied Sciences
Abstract
Accounting for aeroelastic phenomena, such as flutter, in the conceptual design phase is becoming more important as the trend toward increasing the wing aspect ratio forges ahead. However, this task is computationally expensive, especially when utilizing high-fidelity simulations and numerical optimization. Thus, the development of efficient computational strategies is necessary. With this goal in mind, this work proposes a surrogate-based optimization (SBO) methodology for wing design using a predefined machine learning model. For this purpose, a custom-made Python framework was built based on different open-source codes. The test subject was the classical Goland wing, parameterized to allow for SBO. The process consists of employing a Latin Hypercube Sampling plan and subsequently simulating the resulting wing on SHARPy to generate a dataset. A regression-based machine learning model is then used to build surrogate models for lift and drag coefficients, structural mass, and flutter speed. Finally, after validating the surrogate model, a multi-objective optimization problem aiming to maximize the lift-to-drag ratio and minimize the structural mass is solved through NSGA-II, considering a flutter constraint. This SBO methodology was successfully tested, reaching reductions of three orders of magnitude in the optimization computational time.
Description
Keywords
multidisciplinary design optimization, aeroelasticity, multi-objective optimization, wing design, surrogate models
Citation
Lunghitano, A., Afonso, F., & Suleman, A. (2024). A study on the surrogate-based optimization of flexible wings considering a flutter constraint. Applied Sciences, 14(6), 2384. https://doi.org/10.3390/app14062384