A Certain Subclass of Multivalent Analytic Functions Defined by the q-Difference Operator Related to the Janowski Functions

dc.contributor.authorWang, Bo
dc.contributor.authorSrivastava, Rekha
dc.contributor.authorLiu, Jin-Lin
dc.date.accessioned2021-08-04T23:02:26Z
dc.date.available2021-08-04T23:02:26Z
dc.date.copyright2021en_US
dc.date.issued2021
dc.description.abstractA class of p-valent analytic functions is introduced using the q-difference operator and the familiar Janowski functions. Several properties of functions in the class, such as the Fekete–Szegö inequality, coefficient estimates, necessary and sufficient conditions, distortion and growth theorems, radii of convexity and starlikeness, closure theorems and partial sums, are discussed in this paper.en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.identifier.citationWang, B., Srivastava, R., & Liu, J. (2021). A Certain Subclass of Multivalent Analytic Functions Defined by the q-Difference Operator Related to the Janowski Functions. Mathematics, 9(14), 1-16. https://doi.org/10.3390/math9141706.en_US
dc.identifier.urihttps://doi.org/10.3390/math9141706
dc.identifier.urihttp://hdl.handle.net/1828/13201
dc.language.isoenen_US
dc.publisherMathematicsen_US
dc.subjectanalytic functions
dc.subjectq-difference operator
dc.subjectunivalent and multivalent functions
dc.subjectJanowski functions
dc.subjectFekete-Szego inequality
dc.subjectdistortion theorem
dc.subjectradii of starlikeness and convexity
dc.subjectpartial sum
dc.subjectclosure theorems
dc.subject.departmentDepartment of Mathematics and Statistics
dc.titleA Certain Subclass of Multivalent Analytic Functions Defined by the q-Difference Operator Related to the Janowski Functionsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wang_Bo_Mathematics_2021.pdf
Size:
579.06 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2 KB
Format:
Item-specific license agreed upon to submission
Description: