Symbolic and geometric representations of unimodular Pisot substitutions

dc.contributor.authorWieler, Susana
dc.contributor.supervisorPutnam, Ian
dc.date.accessioned2007-07-11T18:23:24Z
dc.date.available2007-07-11T18:23:24Z
dc.date.copyright2007en_US
dc.date.issued2007-07-11T18:23:24Z
dc.degree.departmentDept. of Mathematics and Statisticsen_US
dc.degree.levelMaster of Science M.Sc.en_US
dc.description.abstractWe review the construction of three Smale spaces associated to a unimodular Pisot substitution on d letters: a subshift of finite type (SFT), a substitution tiling space, and a hyperbolic toral automorphism on the Euclidean d-torus. By considering an SFT whose elements are biinfinite, rather than infinite, paths in the graph associated to the substitution, we modify a well-known map to obtain a factor map between our SFT and the hyperbolic toral automorphism on the d-torus given by the incidence matrix of the substitution. We prove that if the tiling substitution forces its border, then this factor map is the composition of an s-resolving factor map from the SFT to a one-dimensional substitution tiling space and a u-resolving factor map from the tiling space to the d-torus.en_US
dc.identifier.urihttp://hdl.handle.net/1828/131
dc.languageEnglisheng
dc.language.isoenen_US
dc.rightsAvailable to the World Wide Weben_US
dc.subjectsubstitutionsen_US
dc.subjectdynamical systemsen_US
dc.subjecttilingsen_US
dc.subjectSmale spacesen_US
dc.subjectPisoten_US
dc.subjecthyperbolic toral automorphismen_US
dc.subjectsubshift of finite typeen_US
dc.subject.lcshUVic Subject Index::Sciences and Engineering::Mathematics::Pure mathematicsen_US
dc.titleSymbolic and geometric representations of unimodular Pisot substitutionsen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
582.65 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.19 KB
Format:
Item-specific license agreed upon to submission
Description: