Multiplicity of solutions for fractional-order differential equations via the k(x)-Laplacian operator and the genus theory
dc.contributor.author | Srivastava, H.M. | |
dc.contributor.author | da Costa Sousa, Jose Vanterler | |
dc.date.accessioned | 2022-11-13T14:14:35Z | |
dc.date.available | 2022-11-13T14:14:35Z | |
dc.date.copyright | 2022 | en_US |
dc.date.issued | 2022 | |
dc.description.abstract | In this paper, we investigate the existence and multiplicity of solutions for a class of quasi-linear problems involving fractional differential equations in the x-fractional space (H y,β;x k(x)) (△). Using the Genus Theory, the Concentration-Compactness Principle, and the Mountain Pass Theorem, we show that under certain suitable assumptions the considered problem has at least k pairs of non-trivial solutions. | en_US |
dc.description.reviewstatus | Reviewed | en_US |
dc.description.scholarlevel | Faculty | en_US |
dc.identifier.citation | Srivastava, H. & da Costa Sousa, J. (2022). “Multiplicity of solutions for fractionalorder differential equations via the k(x)-Laplacian operator and the genus theory.” Fractal and Fractional, 6(9), 481. https://doi.org/10.3390/fractalfract6090481 | en_US |
dc.identifier.uri | https://doi.org/10.3390/fractalfract6090481 | |
dc.identifier.uri | http://hdl.handle.net/1828/14449 | |
dc.language.iso | en | en_US |
dc.publisher | Fractal and Fractional | en_US |
dc.subject | fractional differential equations | en_US |
dc.subject | k(x)-Laplacian | en_US |
dc.subject | x-Hilfer fractional derivative | en_US |
dc.subject | existence | en_US |
dc.subject | multiplicity of solutions | en_US |
dc.subject | genus theory | en_US |
dc.subject | Concentration-Compactness Principle | en_US |
dc.subject | Mountain Pass Theorem | en_US |
dc.subject | variable exponents | en_US |
dc.subject | variational methods | en_US |
dc.title | Multiplicity of solutions for fractional-order differential equations via the k(x)-Laplacian operator and the genus theory | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Srivastava_Hari_FractalFract_2022_4.pdf
- Size:
- 497.92 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 2 KB
- Format:
- Item-specific license agreed upon to submission
- Description: