Multiplicity of solutions for fractional-order differential equations via the k(x)-Laplacian operator and the genus theory

dc.contributor.authorSrivastava, H.M.
dc.contributor.authorda Costa Sousa, Jose Vanterler
dc.date.accessioned2022-11-13T14:14:35Z
dc.date.available2022-11-13T14:14:35Z
dc.date.copyright2022en_US
dc.date.issued2022
dc.description.abstractIn this paper, we investigate the existence and multiplicity of solutions for a class of quasi-linear problems involving fractional differential equations in the x-fractional space (H y,β;x k(x)) (△). Using the Genus Theory, the Concentration-Compactness Principle, and the Mountain Pass Theorem, we show that under certain suitable assumptions the considered problem has at least k pairs of non-trivial solutions.en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.identifier.citationSrivastava, H. & da Costa Sousa, J. (2022). “Multiplicity of solutions for fractionalorder differential equations via the k(x)-Laplacian operator and the genus theory.” Fractal and Fractional, 6(9), 481. https://doi.org/10.3390/fractalfract6090481en_US
dc.identifier.urihttps://doi.org/10.3390/fractalfract6090481
dc.identifier.urihttp://hdl.handle.net/1828/14449
dc.language.isoenen_US
dc.publisherFractal and Fractionalen_US
dc.subjectfractional differential equationsen_US
dc.subjectk(x)-Laplacianen_US
dc.subjectx-Hilfer fractional derivativeen_US
dc.subjectexistenceen_US
dc.subjectmultiplicity of solutionsen_US
dc.subjectgenus theoryen_US
dc.subjectConcentration-Compactness Principleen_US
dc.subjectMountain Pass Theoremen_US
dc.subjectvariable exponentsen_US
dc.subjectvariational methodsen_US
dc.titleMultiplicity of solutions for fractional-order differential equations via the k(x)-Laplacian operator and the genus theoryen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Srivastava_Hari_FractalFract_2022_4.pdf
Size:
497.92 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2 KB
Format:
Item-specific license agreed upon to submission
Description: