Parameterized Quantum Fractional Integral Inequalities Defined by Using n-Polynomial Convex Functions

dc.contributor.authorLiko, Rozana
dc.contributor.authorSrivastava, Hari M.
dc.contributor.authorMohammed, Pshtiwan O.
dc.contributor.authorKashuri, Artion
dc.contributor.authorAl-Sarairah, Eman
dc.contributor.authorSahoo, Soubhagya K.
dc.contributor.authorSoliman, Mohamed S.
dc.date.accessioned2023-10-15T00:07:38Z
dc.date.available2023-10-15T00:07:38Z
dc.date.copyright2022en_US
dc.date.issued2022
dc.description.abstractConvexity performs the appropriate role in the theoretical study of inequalities according to the nature and behaviour. There is a strong relation between symmetry and convexity. In this article, we consider a new parameterized quantum fractional integral identity. Following that, our main results are established, which consist of some integral inequalities of Ostrowski and midpoint type pertaining to n-polynomial convex functions. From our main results, we discuss in detail several special cases. Finally, an example and an application to special means of positive real numbers are presented to support our theoretical results.en_US
dc.description.reviewstatusRevieweden_US
dc.description.scholarlevelFacultyen_US
dc.identifier.citationLiko, R., Srivastava, H. M., Mohammed, P. O., Kashuri, A., Al-Sarairah, E., Sahoo, S. K., & Soliman, M. S. (2022). Parameterized Quantum Fractional Integral Inequalities Defined by Using n-Polynomial Convex Functions. Axioms, 11(12), 727. https://doi.org/10.3390/axioms11120727en_US
dc.identifier.urihttps://doi.org/10.3390/axioms11120727
dc.identifier.urihttp://hdl.handle.net/1828/15511
dc.language.isoenen_US
dc.publisherAxiomsen_US
dc.subjectOstrowski inequalityen_US
dc.subjectRiemann–Liouville q-fractional integralsen_US
dc.subjectq-Hölder’s inequalityen_US
dc.subjectq-power mean inequalityen_US
dc.subjectn-polynomial convex functionsen_US
dc.subjectspecial meansen_US
dc.titleParameterized Quantum Fractional Integral Inequalities Defined by Using n-Polynomial Convex Functionsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
liko_rozana_axioms_2022_FINAL.pdf
Size:
886.24 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2 KB
Format:
Item-specific license agreed upon to submission
Description: